本文共 7791 字,大约阅读时间需要 25 分钟。
返回:
class Complex {public: Complex(){real=0;imag=0;} Complex(double r,double i){real=r; imag=i;} Complex operator+(const Complex &c2); Complex operator-(const Complex &c2); Complex operator*(const Complex &c2); Complex operator/(const Complex &c2); void display();private: double real; double imag;};//下面定义成员函数//下面定义用于测试的main()函数int main(){ Complex c1(3,4),c2(5,-10),c3; cout<<"c1="; c1.display(); cout<<"c2="; c2.display(); c3=c1+c2; cout<<"c1+c2="; c3.display(); c3=c1-c2; cout<<"c1-c2="; c3.display(); c3=c1*c2; cout<<"c1*c2="; c3.display(); c3=c1/c2; cout<<"c1/c2="; c3.display(); return 0;}[参考解答]
#include(2)请用类的友元函数,而不是成员函数,再次完成上面提及的运算符的重载;using namespace std;class Complex{public: Complex(){real=0;imag=0;} Complex(double r,double i){real=r; imag=i;} Complex operator+(const Complex &c2); Complex operator-(const Complex &c2); Complex operator*(const Complex &c2); Complex operator/(const Complex &c2); void display();private: double real; double imag;};//下面定义成员函数//复数相加: (a+bi)+(c+di)=(a+c)+(b+d)i.Complex Complex::operator+(const Complex &c2){ Complex c; c.real=real+c2.real; c.imag=imag+c2.imag; return c;}//复数相减:(a+bi)-(c+di)=(a-c)+(b-d)i.Complex Complex::operator-(const Complex &c2){ Complex c; c.real=real-c2.real; c.imag=imag-c2.imag; return c;}//复数相乘:(a+bi)(c+di)=(ac-bd)+(bc+ad)i.Complex Complex::operator*(const Complex &c2){ Complex c; c.real=real*c2.real-imag*c2.imag; c.imag=imag*c2.real+real*c2.imag; return c;}//复数相除:(a+bi)/(c+di)=(ac+bd)/(c^2+d^2) +(bc-ad)/(c^2+d^2)iComplex Complex::operator/(const Complex &c2){ Complex c; c.real=(real*c2.real+imag*c2.imag)/(c2.real*c2.real+c2.imag*c2.imag); c.imag=(imag*c2.real-real*c2.imag)/(c2.real*c2.real+c2.imag*c2.imag); return c;}void Complex::display(){ cout<<"("< <<","< <<"i)"<
#includeusing namespace std;class Complex{public: Complex() { real=0; imag=0; } Complex(double r,double i) { real=r; imag=i; } friend Complex operator+(Complex &c1, Complex &c2); friend Complex operator-(Complex &c1, Complex &c2); friend Complex operator*(Complex &c1, Complex &c2); friend Complex operator/(Complex &c1, Complex &c2); void display();private: double real; double imag;};//复数相加:(a+bi)+(c+di)=(a+c)+(b+d)i.Complex operator+(Complex &c1, Complex &c2){ Complex c; c.real=c1.real+c2.real; c.imag=c1.imag+c2.imag; return c;}//复数相减:(a+bi)-(c+di)=(a-c)+(b-d)i.Complex operator-(Complex &c1, Complex &c2){ Complex c; c.real=c1.real-c2.real; c.imag=c1.imag-c2.imag; return c;}//复数相乘:(a+bi)(c+di)=(ac-bd)+(bc+ad)i.Complex operator*(Complex &c1, Complex &c2){ Complex c; c.real=c1.real*c2.real-c1.imag*c2.imag; c.imag=c1.imag*c2.real+c1.real*c2.imag; return c;}//复数相除:(a+bi)/(c+di)=(ac+bd)/(c^2+d^2) +(bc-ad)/(c^2+d^2)iComplex operator/(Complex &c1, Complex &c2){ Complex c; c.real=(c1.real*c2.real+c1.imag*c2.imag)/(c2.real*c2.real+c2.imag*c2.imag); c.imag=(c1.imag*c2.real-c1.real*c2.imag)/(c2.real*c2.real+c2.imag*c2.imag); return c;}void Complex::display(){ cout<<"("< <<","< <<"i)"<
事实上,运算符重载的函数还可以定义成一般函数,只不过这种做法并不好。下面给出使用一般函数完成运算符重载的程序。其中,加了序号的几处注释值得关注。
#includeusing namespace std;class Complex{public: Complex() { real=0; imag=0; } Complex(double r,double i) { real=r; imag=i; } double getReal() const { return real; //(1)定义公用的数据接口,可以为const成员函数 } double getImag() const { return imag; } void setReal(double r) { real=r; //(1)定义公用的数据接口 } void setImag(double i) { imag=i; } void display();private: double real; double imag;};//复数相加:(a+bi)+(c+di)=(a+c)+(b+d)i.Complex operator+(const Complex &c1, const Complex &c2) //(3)将参数处理为const更符合需求{ Complex c; c.setReal(c1.getReal()+c2.getReal()); //(2)调用公用数据接口读取和修改私有数据成员 c.setImag(c1.getImag()+c2.getImag()); return c;}//复数相减:(a+bi)-(c+di)=(a-c)+(b-d)i.Complex operator-(const Complex &c1, const Complex &c2){ Complex c; c.setReal(c1.getReal()-c2.getReal()); c.setImag(c1.getImag()-c2.getImag()); return c;}//复数相乘:(a+bi)(c+di)=(ac-bd)+(bc+ad)i.Complex operator*(const Complex &c1, const Complex &c2){ Complex c; c.setReal(c1.getReal()*c2.getReal()-c1.getImag()*c2.getImag()); c.setImag(c1.getImag()*c2.getReal()+c1.getReal()*c2.getImag()); return c;}//复数相除:(a+bi)/(c+di)=(ac+bd)/(c^2+d^2) +(bc-ad)/(c^2+d^2)iComplex operator/(const Complex &c1, const Complex &c2){ Complex c; double d= (c2.getReal()*c2.getReal()+c2.getImag()*c2.getImag()); c.setReal((c1.getReal()*c2.getReal()+c1.getImag()*c2.getImag())/d); c.setImag((c1.getImag()*c2.getReal()-c1.getReal()*c2.getImag())/d); return c;}void Complex::display(){ cout<<"("< <<","< <<"i)"<
#includeusing namespace std;class Complex{public: Complex() { real=0; imag=0; } Complex(double r,double i) { real=r; imag=i; } friend Complex operator+(Complex &c1, Complex &c2); friend Complex operator+(double d1, Complex &c2); friend Complex operator+(Complex &c1, double d2); friend Complex operator-(Complex &c1, Complex &c2); friend Complex operator-(double d1, Complex &c2); friend Complex operator-(Complex &c1, double d2); friend Complex operator*(Complex &c1, Complex &c2); friend Complex operator*(double d1, Complex &c2); friend Complex operator*(Complex &c1, double d2); friend Complex operator/(Complex &c1, Complex &c2); friend Complex operator/(double d1, Complex &c2); friend Complex operator/(Complex &c1, double d2); void display();private: double real; double imag;};//复数相加:(a+bi)+(c+di)=(a+c)+(b+d)i.Complex operator+(Complex &c1, Complex &c2){ Complex c; c.real=c1.real+c2.real; c.imag=c1.imag+c2.imag; return c;}Complex operator+(double d1, Complex &c2){ Complex c(d1,0); return c+c2; //按运算法则计算的确可以,但充分利用已经定义好的代码,既省人力,也避免引入新的错误,但可能机器的效率会不佳}Complex operator+(Complex &c1, double d2){ Complex c(d2,0); return c1+c;}//复数相减:(a+bi)-(c+di)=(a-c)+(b-d)i.Complex operator-(Complex &c1, Complex &c2){ Complex c; c.real=c1.real-c2.real; c.imag=c1.imag-c2.imag; return c;}Complex operator-(double d1, Complex &c2){ Complex c(d1,0); return c-c2;}Complex operator-(Complex &c1, double d2){ Complex c(d2,0); return c1-c;}//复数相乘:(a+bi)(c+di)=(ac-bd)+(bc+ad)i.Complex operator*(Complex &c1, Complex &c2){ Complex c; c.real=c1.real*c2.real-c1.imag*c2.imag; c.imag=c1.imag*c2.real+c1.real*c2.imag; return c;}Complex operator*(double d1, Complex &c2){ Complex c(d1,0); return c*c2;}Complex operator*(Complex &c1, double d2){ Complex c(d2,0); return c1*c;}//复数相除:(a+bi)/(c+di)=(ac+bd)/(c^2+d^2) +(bc-ad)/(c^2+d^2)iComplex operator/(Complex &c1, Complex &c2){ Complex c; c.real=(c1.real*c2.real+c1.imag*c2.imag)/(c2.real*c2.real+c2.imag*c2.imag); c.imag=(c1.imag*c2.real-c1.real*c2.imag)/(c2.real*c2.real+c2.imag*c2.imag); return c;}Complex operator/(double d1, Complex &c2){ Complex c(d1,0); return c/c2;}Complex operator/(Complex &c1, double d2){ Complex c(d2,0); return c1/c;}void Complex::display(){ cout<<"("< <<","< <<"i)"<
转载地址:http://mnsql.baihongyu.com/